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Abstract In this paper, we consider a class of evolution second order hemivariational
inequalities with non-coercive operators which are assumed to be known approximately.
Using the so-called Browder-Tikhonov regularization method, we prove that the regularized
evolution hemivariational inequality problem is solvable. We construct a sequence based on
the solvability of the regularized evolution hemivariational inequality problem and show that
every weak cluster of this sequence is a solution for the evolution second order hemivari-
ational inequality.
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1 Introduction

Let H be a separable Hilbert space and V be a reflexive, separable Banach space which is a
dense subspace of H . We suppose that V compactly embeds into H . Identifying H with its
dual space H∗, we obtain V ⊂ H ⊂ V ∗ forms an evolution triple with all embeddings being
continuous and dense, where V ∗ is the dual space of V (see [23]). A concrete example is
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V = W 1,p
0 (�) with 2 ≤ p < ∞ and H = L2(�), where � ⊂ Rn is a bounded domain with

Lipschitz boundary. We denote by 〈·, ·〉 the duality between V and V ∗, and by ‖·‖E the norm
in the space E being V and V ∗, respectively. Given a fixed number 0 < T < +∞, we denote
by L p(0, T ; V ) the space of strongly measurable Banach-valued functions f : [0, T ] → V
such that

∫ T
0 ‖ f (t)‖p

V dt < ∞. In this paper, let V = L2(0, T ; V ), H = L2(0, T ; H) and
V ∗ = L2(0, T ; V ∗) be the dual space of V . Clearly we have V ⊂ H ⊂ V ∗ with dense
and continuous embeddings due to V ⊂ H ⊂ V ∗ being an evolution triple (see [23]). The
pairing between V and V ∗ is denoted by

〈〈 f, g〉〉 =
T∫

0

〈 f (t), g(t)〉dt for all f ∈ V ∗ and g ∈ V .

The problem under consideration is the following evolution second order hemivariational
inequality:
⎧
⎪⎪⎨

⎪⎪⎩

Find u ∈ V such that u′ ∈ V , u′′ ∈ V ∗ and
〈u′′(t) + Au′(t) + Bu(t) − f (t), v〉 + G◦

2(t, u′, v) ≥ 0 for all v ∈ V and a.e. t ∈ [0, T ]
u(0) = θ

u′(0) = θ,

(1.1)

where A and B are nonlinear operators from Banach space V into its dual V ∗, f ∈ V ∗, θ
is the zero element of Banach space V , and G◦

2(t, u, v) denotes the generalized directional
derivative of G at u in the direction v with respect to the second variable u.

It can be seen that the evolution second order hemivariational inequality (1.1) is equivalent
to the following evolution second order inclusion:

⎧
⎪⎪⎨

⎪⎪⎩

Find u ∈ V such that u′ ∈ V , u′′ ∈ V ∗ and
f (t) ∈ u′′(t) + Au′(t) + Bu(t) + ∂2G(t, u′(t)) for a.e. t ∈ [0, T ]
u(0) = θ

u′(0) = θ,

(1.2)

where ∂2G(t, ·) denotes the Clarke’s generalized gradient of the locally Lipschitz functional
G(t, ·) with respect to the second variable.

The notion of the hemivariational inequality was introduced by Panagiotopoulos in the
early 1980s as variational expressions for several classes of mechanical problems with non-
smooth and nonconvex energy superpotentials (see [16,18,19]). The derivation of hemivari-
ational inequality is based on the mathematical notion of the generalized gradient of Clarke
(see [8]). The hemivariational inequalities appear in a variety of mechanical problems, for
example, the unilateral contact problems in nonlinear elasticity, the problems describing
the adhesive and frictional effects, the nonconvex semipermeability problems, the masonry
structures, and the delamination problems in multilayered composites, see [15,16,19,20] for
detailed descriptions. Recently, many kinds of the hemivariational inequalities have been
studied under some suitable hypotheses. Using the method of subsolution and supersolution,
Carl et al. [3,5,6] got the existence results of solutions for some quasi-linear hemivariational
inequalities and quasi-linear evolution hemivariational inequalities. In [22], Xiao and Huang
studied a new class of generalized quasi-variational-like hemivariational inequalities with
multi-valued η-pseudomonotone operators and obtained some new existence theorems of
solutions for the generalized quasi-variational-like hemivariational inequalities. Ochal [17]
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considered a class of evolution hemivariational inequalities of second order with a time-
dependent pseudomonotone operator and nonmonotone multivalued perturbations, presented
the existence of solutions and discussed some useful examples which indicated the practical
importance of their theoretical findings. We can refer to [4,9,14,21] for more related works.

On the other hand, many authors have increasingly paid their attention to obtaining rea-
sonable approximations to solutions of hemivariational inequalities. In [12] and [13], Liu
devoted to the regularization of a class of evolution hemivariational inequalities and obtained
a strongly convergent approximation procedure by means of the so-called Browder-Tikhonov
regularization method.

In this paper, instead of exact data (A, B, G, f ), we assume that only the noisy data
(Aαn , Bβn , Gγn , fθn ) are available, where {αn}, {βn}, {γn}, {θn} are sequences of positive
reals. By using the so-called Browder-Tikhonov regularization method, we prove that the
regularized evolution hemivariational inequality problem is solvable under the relationship
between exact data and noisy data. We construct a sequence based on the solvability of the
regularized evolution hemivariational inequality problem and show that every weak cluster
of this sequence is a solution for the second order evolution hemivariational inequality (1.1).

2 Preliminaries

Suppose that V is a Banach space and g :V → R is a locally Lipschitz functional on V . For
a given point u ∈ V and any other vector v ∈ V , the generalized directional derivative of g
at u in the direction v, denoted by g◦(u, v) is given by

g◦(u, v) = lim sup
w→u t↓0

g(w + tv) − g(w)

t
,

where w ∈ V and λ is a positive scalar (see [8]). The Clarke’s generalized gradient of g at u
(see [8]), denoted by ∂g(u) is defined by

∂g(u) = {w ∈ V ∗ : g◦(u, v) ≥ 〈w, v〉,∀v ∈ V }.
A locally Lipschitz functional g :V → R is said to be regular at point u ∈ V if the directional
derivative g′(u, v) exists and g◦(u, v) = g′(u, v) for all v ∈ V . We say that g is regular on
V if g is regular at any point u ∈ V .

Let W = {w ∈ V : w′ ∈ V ∗}, where the derivative w′ = ∂w/∂t is understood in the
sense of vector-valued distributions (see [23]), which is characterized by

T∫

0

w′(t)φ(t)dt = −
T∫

0

w(t)φ′(t)dt, ∀φ ∈ C∞
0 [0, T ].

The space W endowed with the graph norm

‖w‖W = ‖w‖V + ‖w′‖V ∗ , ∀w ∈ W

is a Banach space which is separable and reflexive due to the separability and reflexivity of
V and V ∗, respectively (see Propositions 23.7(c) and 23.23(i) in [23]).

Let L : D(L) ⊂ V → V ∗ be the operator defined by Lu = u′(∂u/∂t) with

D(L) = {u ∈ W : u(0) = θ}.
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It can be shown that L : D(L) ⊂ V → V ∗ is a closed, densely defined and linear maximal
monotone operator (see [23]) with

〈〈Lu, v〉〉 =
T∫

0

〈u′(t), v(t)〉dt, ∀u ∈ D(L), v ∈ V .

Thus, the Problem (1.1) we consider becomes the following initial value problem:
⎧
⎪⎪⎨

⎪⎪⎩

Find u ∈ V such that u′ ∈ W and
〈u′′(t) + Au′(t) + Bu(t) − f (t), v〉 + G◦

2(t, u′, v) ≥ 0 for all v ∈ V and a.e. t ∈ [0, T ]
u(0) = θ

u′(0) = θ,

(2.1)

which is equivalent to the following evolution inclusion
⎧
⎪⎪⎨

⎪⎪⎩

Find u ∈ V such that u′ ∈ W and
f (t) ∈ u′′(t) + Au′(t) + Bu(t) + ∂2G(t, u′(t)) for a.e. t ∈ [0, T ]
u(0) = θ

u′(0) = θ.

(2.2)

In the sequel, to formulate our main results, we present some important definitions, lemmas,
theorems and hypotheses.

Definition 2.1 (see [10]) Let V be a real reflexive Banach space with its dual V ∗. A mapping
T : D(T ) ⊂ V → 2V ∗

is said to be pseudomonotone if the following conditions hold:

(a) The set Tu is nonempty, bounded, closed and convex for all u ∈ D(T );
(b) T is upper semi-continuous from each finite dimensional subspace F of V into V ∗

endowed with the weak topology;
(c) if {ui } is a sequence in D(T ) converging weakly to u of D(T ), and if u∗

i ∈ Tui is such
that lim sup〈u∗

i , ui − u〉 ≤ 0, then for each element v ∈ D(T ) there exists u∗(v) ∈ Tu
with the property that

lim inf〈u∗
i , ui − u〉 ≥ 〈u∗(v), u − v〉.

Definition 2.2 (see [10]) Let V be a real reflexive Banach space with its dual V ∗, L : D(L) ⊂
V → V ∗ be a linear densely defined maximal monotone mapping. A mapping T : D(T ) ⊂
V → 2V ∗

is said to be pseudomonotone with respect to D(L) if and only if (a), (b) and the
following condition holds:

(d) if {ui } ∈ D(L) ∩ D(T ) is such that ui → u weakly in V, Lui → Lu weakly in
V ∗, u∗

i ∈ T (ui ), u∗
i → u∗ weakly in V ∗ and lim sup〈u∗

i , ui − u〉 ≤ 0, then u∗ ∈ T (u)

and 〈u∗
i , ui 〉 → 〈u∗, u〉.

Definition 2.3 (see [2,16,23]) A mapping T : D(T ) ⊂ V → 2V ∗
is said to have (S+)

property (be of class (S+)) if and only if (a), (b) and the following condition holds:

(e) for any sequence {ui } in D(T ) converging weakly to u ∈ D(T ), wi ∈ T (ui ), the condi-
tion

lim sup〈wi , ui − u〉 ≤ 0

implies the strong convergence of {ui } to u in V and there exists a subsequence {wni } of
{wi } such that {wni } converges weakly to w ∈ T u in V ∗.
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It is well known that the conditions

‖J (u)‖V ∗ = ‖u‖V and 〈J (u), u〉 = ‖u‖2
V , ∀u ∈ V (2.3)

determine a unique mapping J from V to V ∗, which is called the duality mapping. In our
case it is bijective bicontinuous, strictly monotone and of class (S+). For more details we
can refer to [23].

Definition 2.4 (see [1]) Let L : D(L) ⊂ V → V ∗ be a linear densely defined maximal
monotone mapping. A multivalued mapping T : D(T ) ⊂ V → 2V ∗

is said to have (S+)

property with respect to D(L) (be of class (S+) with respect to D(L)) if and only if (a), (b)

and the following condition holds:

(f) for any sequence {ui } in D(T )∩ D(L) converging weakly to u ∈ D(T ), Lun converging
weakly to Lu in V ∗ and for any sequence {wi } in V ∗ with wi ∈ T (ui ) for each i ≥ 1,
the condition

lim sup〈wi , ui − u〉 ≤ 0

implies the strong convergence of {ui } to u in V and there exists a subsequence {wni } of
{wi } such that {wni } converges weakly to w ∈ T u in V ∗.

Lemma 2.1 (see [1]) Let V be a reflexive Banach space and T : D(T ) ⊂ V → 2V ∗
be a

multivalued mapping. If T is demicontinuous and has (S+) property, then T is pseudomono-
tone.

Theorem 2.1 (see [10]) Let V be a real reflexive, strictly convex Banach space with dual
space V ∗ and let L : D(L) ⊂ V → V ∗ be a closed, densely and maximal monotone operator.
If the multivalued mapping T : V → 2V ∗

is bounded, coercive and pseudomonotone with
respect to D(L), then L + T is surjective, i.e., R(L + T ) = V ∗.

Definition 2.5 Let m be a positive constant. By A(m) we denote the class of mappings
A : V → V ∗, which is bounded, demicontinuous and satisfies the following strong monoto-
nicity condition:

〈Au − Av, u − v〉 ≥ m‖u − v‖2
V , ∀u, v ∈ V . (2.4)

By G(m), we denote the class of locally Lipschitz functional G(t, ·) : V → R for every
t ∈ [0, T ] which satisfies the following two conditions:

(i) There exists a constant h > 0, such that for all u ∈ V, t ∈ [0, T ] and ξ ∈ ∂2G(t, u),

‖ξ‖V ∗ ≤ h(1 + ‖u‖V ); (2.5)

(ii) For any t ∈ (0, T ), u, v ∈ V ,

〈u∗ − v∗, u − v〉 ≥ −m‖u − v‖2
V , ∀u∗ ∈ ∂2G(t, u) and v∗ ∈ ∂2G(t, v). (2.6)

The conditions (i) and (ii) are called growth condition and relaxed monotonicity condition,
respectively.

Remark 2.1 If A ∈ A(m) and G(t, ·) ∈ G(m) for any t ∈ [0, T ], then we obviously have
that A + ∂2G(t, ·) is monotone but may not be coercive in general.
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Let {εn} with εn > 0 be a sequence of positive reals which is (strictly) decreasing and
converges to zero. Let αn, βn, γn and θn be four sequences of positive reals. The hypotheses
of evolution hemivariational inequality (1.1) between the exact data and the noisy data are
as follows:

H(1) There exists a constant c1 such that

‖Aαn z − Az‖V ∗ ≤ αnc1‖z‖V ,∀z ∈ V ;
H(2) There exists a constant c2 such that

‖Bβn z − Bz‖V ∗ ≤ βnc2‖z‖V ,∀z ∈ V ;
H(3) There exists a constant c3 such that for all z ∈ V, t ∈ [0, T ]

H(∂2Gγn (t, z), ∂2G(t, z)) ≤ γnc3‖z‖V ,

where H(Q, S) = max{sup
x∈Q

d(x, S), sup
y∈S

d(y, Q)} is the Hausdorff distance between

the sets Q and S;
H(4) For fθn ∈ V ∗, we have

‖ fθn − f ‖V ∗ ≤ θn;
H(5) For n → ∞,

αn, βn, γn, θn,
αn

εn
,
βn

εn
,
γn

εn
,
θn

εn
→ 0.

Example 2.1 Let V = H be a Hilbert space and G : [0, T ] × H → R be a mapping such
that G(t, ·) ∈ G(m) for any t ∈ [0, T ] and G is regular with respect to the second variable.
Let Gγn : [0, T ] × H → R be a mapping defined by

Gγn (t, u) = G(t, u) + γn‖u‖2,

where γn > 0 is a real sequence. By the regularity of mapping G and ‖u‖2, Proposition
2.174 of [7] (cf. p. 68) implies that

∂2Gγn (t, u) = ∂2G(t, u) + γn∂(‖u‖2), (2.7)

where ∂(‖u‖2) is the Clarke’s generalized gradient of ‖u‖2. It is well known that, for any
u ∈ H ,

∂(‖u‖2) = 2u,

which together with (2.7) implies

∂2Gγn (t, u) = ∂2G(t, u) + 2γnu. (2.8)

Now we can conclude that

H(∂2Gγn (t, u), ∂2G(t, u)) ≤ 2γn‖u‖ (2.9)

and thus, H(3) is satisfied with c3 = 2. In fact, for any w ∈ ∂2Gγn (t, u), v ∈ ∂2G(t, u), it
follows from (2.8) that there exists a v′ ∈ ∂2G(t, u) such that w = v′ + 2γnu and so

‖w − v‖ = ‖v′ + 2γnu − v‖ ≤ ‖v′ − v‖ + 2γn‖u‖,
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which implies that

sup
w∈∂2Gγn (t,u)

d(w, ∂2G(t, u)) ≤ sup
v′∈∂2G(t,u)

d(v′, ∂2G(t, u)) + 2γn‖u‖

= 2γn‖u‖ (2.10)

and

sup
v∈∂2G(t,u)

d(v, ∂2Gγn (t, u)) ≤ sup
v∈∂2G(t,u)

d(v, ∂2G(t, u)) + 2γn‖u‖
= 2γn‖u‖. (2.11)

It follows from (2.10), (2.11) and the definition of Hausdorff distance that

H(∂2Gγn (t, u), ∂2G(t, u)) ≤ 2γn‖u‖.
This shows that (2.9) holds.

Lemma 2.2 (see [11]) Let C ⊂ V be non-empty, closed and convex, C∗ ⊂ V ∗ be non-empty,
closed, convex and bounded, ϕ : V → R be proper, convex and lower semi-continuous and
y ∈ C be arbitrary. Assume that for each x ∈ C there exists x∗(x) ∈ C∗ such that

〈x∗(x), x − y〉 ≥ ϕ(y) − ϕ(x).

Then there exists y∗ ∈ C∗ such that

〈y∗, x − y〉 ≥ ϕ(y) − ϕ(x), ∀x ∈ C.

3 Main results

Denote an operator K :V → C(0, T ; V ) by

Kv(t) =
t∫

0

v(s)ds for all v ∈ V .

It is easy to see that K is a bounded and continuous operator from V to C(0, T ; V ) (see
[23]). Consider the following evolution first order hemivariational inequality:
⎧
⎨

⎩

Find z ∈ W such that
〈z′(t) + Az(t) + BKz(t) − f (t), v〉 + G◦

2(t, z(t), v) ≥ 0 for all v ∈ and a.e. t ∈ [0, T ]
z(0) = θ.

(3.1)

We observe that z is a solution to (3.1) if and only if u := K z satisfies (2.1). Therefore, in
what follows, we will consider the evolution hemivariational inequality (3.1).

Lemma 3.1 z ∈ W is a solution of evolution hemivariational inequality (3.1) if and only if
z is a solution of the following evolution inclusion: Find z ∈ D(L) such that

f (t) ∈ Lz(t) + Az(t) + BKz(t) + ∂2G(t, z(t)) for a.e. t ∈ [0, T ]. (3.2)
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Proof Sufficiency Let z ∈ D(L) be a solution of evolution inclusion (3.2). Then z ∈
W , z(0) = θ and

f (t) ∈ Lz(t) + Az(t) + BKz(t) + ∂2G(t, z(t)) for a.e. t ∈ [0, T ].
So there exists a w(t) ∈ ∂2G(t, z(t)) such that

Lz(t) + Az(t) + BKz(t) + w(t) = f (t) for a.e. t ∈ [0, T ].
Scalar multiplying the above equality by v ∈ V , we have

〈z′(t) + Az(t) + BKz(t) + w(t), v〉 = 〈 f (t), v〉 for a.e. t ∈ [0, T ].
Since the Clarke generalized gradient ∂2G(t, z(t)) is given by

∂2G(t, z(t)) = {w(t) ∈ V ∗ : G◦
2(t, z(t), v) ≥ 〈w(t), v〉,∀v ∈ V },

we obtain

〈z′(t) + Az(t) + BKz(t) − f (t), v〉 + G◦
2(t, z(t), v) ≥ 0 for all v ∈ V and a.e. t ∈ [0, T ],

which implies that z is a solution of the evolution hemivariational inequality (3.1).
Necessity Let z ∈ W be a solution of evolution hemivariational inequality (3.1). Then

z(0) = θ and so z ∈ D(L). It follows that

〈z′(t) + Az(t) + BKz(t) − f (t), v〉 + G◦
2(t, z(t), v) ≥ 0 for all v ∈ V

and a.e. t ∈ [0, T ].
From the fact that

G◦
2(t, z(t), v) = max{〈w(t), v〉 : w(t) ∈ ∂2G(t, z(t))},

we have that, for each v ∈ V , there exists a w(t, v) ∈ ∂2G(t, z(t)) such that

〈Lz(t) + Az(t) + BKz(t) + w(t, v) − f (t), v〉 ≥ 0, for a.e. t ∈ [0, T ]. (3.3)

By virtue of Proposition 1.5 of [8] (cf. p. 73), we get that for any t ∈ (0, T ), ∂2G(t, z(t)) is a
non-empty, closed, convex and bounded subset in V ∗, which implies that for any t ∈ (0, T ),

{Lz(t) + Az(t) + BKz(t) + w(t) − f (t) : w(t) ∈ ∂2G(t, z(t))}
is nonempty, closed, convex and bounded in V ∗. So, it follows from Lemma 2.2 with ϕ = 0
and (3.3) that there exists w(t) ∈ ∂2G(t, z(t)) such that

〈Lz(t) + Az(t) + BKz(t) + w(t) − f (t), v〉 ≥ 0, for all v ∈ V and a.e. t ∈ [0, T ].
which implies that

f (t) = Lz(t) + Az(t) + BKz(t) + w(t) ∈ Lz(t) + Az(t) + BKz(t) + ∂2G(t, z(t))

for a.e. t ∈ (0, T ),

i.e. z is a solution of evolution inclusion (3.2). This completes the Proof of Lemma 3.1. ��
Now, we consider the following regularized evolution hemivariational inequality of prob-

lem (3.1):
⎧
⎪⎪⎨

⎪⎪⎩

Find zn ∈ W such that
〈z′

n(t), v〉 + 〈Aαn zn(t) + Bβn K zn(t) + εn J (zn(t)) − fθn (t), v〉
+Gγn

◦
2(t, zn(t), v) ≥ 0 for all v ∈ V and a.e. t ∈ [0, T ]

zn(0) = θ,

(3.4)
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where the operator J :V → V ∗ is the regularizing operator, εn is the regularization parameter
and zn is the regularized solution to the problem (3.1). Here the symbol (αn, βn, γn, θn, εn)

shows the influence of the error parameters αn, βn, γn, θn and the regularization parameters
εn .

Corollary 3.1 zn ∈ W is a solution of regularized evolution hemivariational inequality (3.4)
if and only if zn is a solution of the following regularized evolution inclusion: Find zn ∈ D(L)

such that

fθn (t) ∈ Lzn(t) + Aαn zn(t) + Bβn K zn(t) + εn J (zn(t)) + ∂2Gγn (t, zn(t))

for a.e. t ∈ [0, T ]. (3.5)

Proof The proof is similar to Lemma 3.1. We omit it here. ��

Theorem 3.1 Assume that the hypotheses H(1) − H(5) hold, the operators Aαn ∈ A(m),

Gγn ∈ G(m) and Bβn is a bounded, linear, monotone and symmetric operator. Then, for
each n ∈ N and given fθn ∈ V there exists a unique solution of the regularized evolution
inclusion (3.5).

In order to prove Theorem 3.1, we first define the operators A , Aαn , B, Bβn , J :
V → V ∗ and N , Nγn : V → 2V ∗

, respectively, as follows:

(A v)(·) = A(v(·)); (Aαn v)(·) = Aαn (v(·));
(Bv)(·) = B(Kv(·)); (Bβn v)(·) = Bβn (Kv(·));
(J v)(·) = J (v(·))

and

N v = {w ∈ V ∗ : w(t) ∈ ∂2G(t, v(t)) for a.e. t ∈ [0, T ]}
with

Nγn v = {w ∈ V ∗ : w(t) ∈ ∂2Gγn (t, v(t)) for a.e. t ∈ [0, T ]}
for all v ∈ V .

Lemma 3.2 Assume that A, Aαn ∈ A(m) and G, Gγn ∈ G(m). Suppose that B and Bβn are
bounded, linear, monotone and symmetric operators. Assume that the operators
A , Aαn , B, Bβn , N and Nγn are defined as above. Then

(1) A and Aαn are bounded and demicontinuous operators from V to V ∗;
(2) B and Bβn are linear, bounded and monotone operators from V to V ∗;
(3) N and Nγn are bounded and weakly closed multivalued operators from V into V ∗;
(4) A + N and Aαn + Nγn are monotone from V into V ∗;
(5) J is the duality mapping from V to V ∗.

Proof Since A, Aαn ∈ A(m), we can easily deduce that A and Aαn are bounded by their
definition and demicontinuous by Lemma 1 of Berkovits and Mustonen [1], which proves
that (1) holds. Due to the operators B and K are all linear we get B is linear. By the definition
of B, we have
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‖Bz‖2
V ∗ =

T∫

0

‖BKz(t)‖2
V ∗dt

≤ ‖B‖2
L (V,V ∗)

T∫

0

‖
t∫

0

z(s)ds‖2
V dt

≤ ‖B‖2
L (V,V ∗)

T∫

0

T 2‖z(t)‖2
V dt

= ‖B‖2
L (V,V ∗)T

2‖z‖2
V ,

which implies that B is a bounded operator in terms of boundedness of the operator B.
Furthermore, lets us note that B is monotone and symmetric. Thus, for any y, z ∈ V ,

〈〈B(y) − B(z), y − z〉〉 =
T∫

0

〈BKy(t) − BKz(t), y(t) − z(t)〉dt

=
T∫

0

〈BKy(t) − BKz(t), (Ky)′(t) − (Kz)′(t)〉dt

= 1

2

T∫

0

d

dt
〈BKy(t) − BKz(t), Ky(t) − Kz(t)〉dt

≥ 0,

which implies that B is monotone. Similarly, we can prove that Bβn is a linear, bounded
and monotone operator which proves that (2) holds. Since G ∈ G(m), under the assumption
(2.5) we can get that N is weakly closed in V ∗ by Ochal [17]. Again by the assumption
(2.5), for any z ∈ V and ζ ∈ N z, we have

‖ζ(t)‖V ∗ ≤ h(1 + ‖z(t)‖V ) for a.e. t ∈ [0, T ]
and so

‖ζ‖2
V ∗ =

T∫

0

‖ζ(t)‖2
V ∗dt ≤

T∫

0

h2(1 + ‖z(t)‖V )2dt ≤ k1 + k2

T∫

0

‖z(t)‖2
V dt

= k1 + k2‖z‖2
V ,

where k1, k2 are two constants, which implies that N is a bounded operator from V into V ∗.
Similarly, we also can prove that Nγn is a bounded and weakly closed multivalued operator
which proves that (3) holds. For (4), we can be easily prove it due to A, Aαn ∈ A(m) and
G, Gγn ∈ G(m). In fact, since A ∈ A(m) and G ∈ G(m), by the definitions of A and N ,
we get

〈〈A y − A z, y − z〉〉 =
T∫

0

〈Ay(t) − Az(t), y(t) − z(t)〉dt ≥
T∫

0

m‖y(t) − z(t)‖2
V dt

= m‖y − z‖2
V (3.6)
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for any y, z ∈ V and

〈〈wy − wz, y − z〉〉 =
T∫

0

〈wy(t) − wz(t), y(t) − z(t)〉dt ≥
T∫

0

−m‖y(t) − z(t)‖2
V dt

= −m‖y − z‖2
V (3.7)

for any y, z ∈ V , wy ∈ N (y) and wz ∈ N (z). Adding the above two inequalities (3.6) and
(3.7), we obtain

〈〈A y + wy − (A z + wz), y − z〉〉 ≥ 0

for any y, z ∈ V , wy ∈ N (y) and wz ∈ N (z), which implies that A + N is monotone.
The proof for the monotonicity of the operator Aαn + Nγn is similar. By the definition of
operator J , it follows from the condition (2.3) that

〈〈J z, z〉〉 =
T∫

0

〈J (z(t)), z(t)〉dt =
T∫

0

‖z(t)‖2
V dt = ‖z‖2

V (3.8)

and

‖J z‖2
V ∗ =

T∫

0

‖J (z(t))‖2
V ∗dt =

T∫

0

‖z(t)‖2
V dt = ‖z‖2

V , (3.9)

which imply that J is the duality mapping from V to V ∗. This completes the Proof of
Lemma 3.2. ��

Lemma 3.3 Under the hypotheses H(1), H(2) and H(3) imposed on the operators A, B, G
and their noisy data Aαn , Bβn , Gγn , we can obtain the following results: for any z ∈ V ,

‖Aαn z − A z‖V ∗ ≤ αnc1‖z‖V and ‖Bβn z − Bz‖V ∗ ≤ βnc2T ‖z‖V (3.10)

and for εn > 0, there exist wn ∈ Nγn z and ŵn ∈ N zn such that

‖wn − w‖V ∗ ≤ γnc3‖z‖V + T 1/2εn, ∀w ∈ N z (3.11)

and

‖wn − ŵn‖V ∗ ≤ γnc3‖zn‖V + T 1/2εn, ∀wn ∈ Nγn zn . (3.12)

Proof For any z ∈ V , by the hypotheses H(1) and H(2),

‖Aαn z − A z‖2
V ∗ =

T∫

0

‖Aαn z(t) − Az(t)‖2
V ∗dt

≤
T∫

0

α2
nc2

1‖z(t)‖2
V dt

= α2
nc2

1‖z‖2
V
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and

‖Bβn z − Bz‖2
V ∗ =

T∫

0

‖Bβn Kz(t) − BKz(t)‖2
V ∗dt

≤
T∫

0

β2
n c2

2‖
t∫

0

z(s)ds‖2
V dt

≤ β2
n c2

2T 2‖z‖2
V ,

which prove that (3.10) holds. By definitions of Nγn and N , one has wn(t) ∈ ∂2Gγn (t, z(t))
and w(t) ∈ ∂2G(t, z(t)) for all t ∈ [0, T ] when wn ∈ Nγn z and w ∈ N z. So from hypothesis
H(3), for εn > 0 and w ∈ N z, we can choose a wn ∈ Nγn z such that

‖wn − w‖2
V ∗ =

T∫

0

‖wn(t) − w(t)‖2
V ∗dt

≤
T∫

0

(d(∂2Gγn (t, z(t)), w(t)) + εn)2dt

≤
T∫

0

(H(∂2Gγn (t, z(t)), ∂2G(t, z(t))) + εn)2dt

≤
T∫

0

(γnc3‖z(t)‖V + εn)2dt

=
T∫

0

(γ 2
n c2

3‖z(t)‖2
V + 2εnγnc3‖z(t)‖V + ε2

n)dt

≤ γ 2
n c2

3‖z‖2
V + 2εnγnc3T 1/2‖z‖V + T ε2

n

= (γnc3‖z‖V + T 1/2εn)2,

which proves that (3.11) holds. Similarly, we can prove that there exists a ŵn ∈ Nzn such
that (3.12) holds. This completes the proof of Lemma 3.3. ��
Lemma 3.4 zn ∈ D(L) is a solution of regularized evolution inclusion (3.5) if and only if
zn solves the following problem: Find zn ∈ D(L) such that

fθn ∈ Lzn + Snzn (3.13)

with the operator Sn :V → 2V ∗
given by

Snzn = Aαn zn + Bβn zn + εnJ zn + Nγn zn .

Similarly, z ∈ D(L) is a solution of the evolution inclusion (3.2) if and only if z solves the
following problem: Find z ∈ D(L) such that

f ∈ Lz + Sz (3.14)
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with the operator S :V → 2V ∗
given by

Sz = A z + Bz + N z.

Proof The proof is obvious and so we omit it here. ��
Proof of Theorem 3.1 By Lemma 3.4, we need only to prove the existence of solutions for
problem (3.13). It follows from Theorem 2.1 that we need only to prove that the operator Sn

is a bounded, coercive and pseudomonotone mapping with respect to D(L).

Claim 1 Sn is bounded.

From Lemma 3.2, we have Aαn , Bβn , Nγn are bounded operators and J is duality map-
ping from V to V ∗. So J is bounded mapping from V to V ∗ which implies that the operator
Sn = Aαn + Bβn + εnJ + Nγn is bounded from V into V ∗.

Claim 2 Sn is coercive.

By the assumption Bβn is a linear, monotone and symmetric operator, we get

〈〈Bβn z, z〉〉 =
T∫

0

〈Bβn Kz(t), z(t)〉dt

=
T∫

0

〈Bβn Kz(t), (Kz)′(t)〉dt

=
T∫

0

1

2
〈Bβn Kz(t), Kz(t)〉dt

≥ 0. (3.15)

Since Aαn ∈ A(m), Gγn ∈ G(m), for any z ∈ V and w ∈ Nγn (z), it follows from (2.4) and
(2.6) that

〈〈Aαn z, z〉〉 =
T∫

0

〈Aαn z(t), z(t)〉dt

≥
T∫

0

(
m‖z(t)‖2

V − ‖Aαn (θ)‖V ∗‖z(t)‖V
)

dt

≥ m‖z‖2
V − k3‖z‖V (3.16)

and

〈〈w, z〉〉 =
T∫

0

〈w(t), z(t)〉dt

≥
T∫

0

(−m‖z(t)‖2
V − ‖w′‖V ∗‖z(t)‖V

)
dt

≥ −m‖z‖2
V − k4‖z‖V , (3.17)
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where w′ ∈ Nγn (θ), k3 and k4 are two constants. Combining (3.8) with (3.15–3.17), for any
z ∈ V and w ∈ Nγn (z), we obtain

〈〈Aαn z + Bβn z + εnJ z + w, z〉〉 ≥ εn‖z‖2
V − (k3 + k4)‖z‖V

and so

inf

{ 〈〈z∗, z〉〉 : z∗ ∈ Snz

‖z‖V

}

→ ∞ when ‖z‖V → ∞,

which proves the coercivity of Sn for all εn > 0.

Claim 3 Sn is pseudomonotone with respect to D(L).

To show Sn is pseudomonotone with respect to D(L), we need only to prove that Sn is
demicontinuous and has (S+) property with respect to D(L). Similar to the Proof of Theorem
4 in [17], we easily show that conditions (a) and (b) in the definition of (S+) property with
respect to D(L) hold. Now let {zk} ∈ D(L) with zk → z weakly in V , Lzk → Lz weakly in
V ∗ and wk ∈ Nγn zk such that

lim sup
k→∞

〈〈Aαn zk + Bβn zk + εnJ zk + wk, zk − z〉〉 ≤ 0. (3.18)

By (2) in Lemma 3.2, the operator Bβn is monotone. Thus, it follows from the weak conver-
gence of zk that

lim
k→∞〈〈Bβn (zk), zk − z〉〉 = lim

k→∞〈〈Bβn (zk) − Bβn (z), zk − z〉〉
+ lim

k→∞〈〈Bβn (z), zk − z〉〉 ≥ 0. (3.19)

Since Aαn ∈ A(m), Gγn ∈ G(m), by (4) in Lemma 3.2, we know that Aαn + Nγn is also
monotone and so

lim
k→∞〈〈Aαn zk + wk, zk − z〉〉 = lim

k→∞〈〈Aαn zk + wk − (Aαn z + w), zk − z〉〉
+ lim

k→∞〈〈Aαn z + w, zk − z〉〉 ≥ 0. (3.20)

It follows from (3.18–3.20) that

lim sup
k→∞

〈〈εnJ zk, zk − z〉〉 ≤ 0. (3.21)

Again by Lemma 3.2, J is the duality mapping from V to V ∗ and so it is bijective bicon-
tinuous strictly monotone and of class (S+). Therefore, it follows from the above inequality
(3.21) that

zk → z and J zk → J z as k → ∞. (3.22)

Again due to Aαn ∈ A(m), Gγn ∈ G(m), by (1–3) in Lemma 3.2, we know that Aαn is
demicontinuous, Bβn is linear and bounded (thus it is continuous), and Nγn is weakly closed
from V into V ∗. It follows that

Aαn (zk) ⇀ Aαn (z) as k → ∞, (3.23)

Bβn (zk) → Bβn (z) as k → ∞ (3.24)

and there exist a w ∈ Nγn (z) such that

wk ⇀ w ∈ Nγn (z) as k → ∞. (3.25)
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Combining (3.22–3.25), there exists w ∈ Nγn (z) such that

Aαn zk + Bβn zk + εnJ zk + wk ⇀ Aαn z + Bβn z + εnJ z + w ∈ Snz,

which implies that Sn has (S+) property with respect to D(L). Therefore, the operator Sn is
a demicontinuous mapping of class (S+) with respect to D(L) and so it is pseudomonotone
with respect to D(L).

From the Claims 1–3, Sn is bounded, coercive and pseudomonotone with respect to D(L).
It follows from Theorem 2.1 that L + Sn is surjective, i.e., for each fθn ∈ V ∗, there exists
zn ∈ D(L) such that

fθn ∈ Lzn + Snzn = Lzn + Aαn zn + Bβn zn + εnJ zn + Nγn zn,

which implies that zn is a solution of (3.5). By Lemma 3.2, the operators Aαn + Nγn , Bβn

are monotone and J is duality mapping from V to V ∗ so it is strictly monotone. Therefore,
the operator L + Sn = L + Aαn + Bβn + εnJ + Nγn is strictly monotone from V to V ∗
which implies that the uniqueness of the solution for regularized evolution inclusion (3.5).
This completes the Proof of Theorem 3.1. ��
Theorem 3.2 Assume that the mappings A, Aαn ∈ A(m) and G, Gγn ∈ G(m). Suppose
that the mappings B, Bβn are bounded, linear, monotone and symmetric operators and the
hypotheses H(1) − H(5) hold. If the evolution inclusion (3.2) is solvable, then the solution
{zn} for the regularized evolution inclusion (3.5) is uniformly bounded in W .

Proof Since zn solves the regularized evolution inclusion (3.5), we obtain zn ∈ D(L) and

fθn ∈ Lzn + Aαn zn + Bβn zn + εnJ zn + Nγn zn . (3.26)

By the assumption that the evolution inclusion (3.2) is solvable, from Lemma 3.4 there exists
at least a z ∈ D(L) such that

− f ∈ −Lz − A z − Bz − N z. (3.27)

Summing-up (3.26) and (3.27) side by side, we get

fθn − f ∈ Lzn − Lz + Aαn zn − A z + Bβn zn − Bz + εnJ zn + Nγn zn − N z,

which implies that there exist wn ∈ Nγn zn and w ∈ N z such that

〈〈 fθn − f, zn − z〉〉 = 〈〈Lzn − Lz, zn − z〉〉 + 〈〈Aαn zn − A z, zn − z〉〉
+ 〈〈Bβn zn − Bz, zn − z〉〉 + 〈〈εnJ zn, zn − z〉〉
+ 〈〈wn − w, zn − z〉〉.

Therefore, for any wn ∈ Nγn z,

〈〈εnJ zn, zn − z〉〉 = 〈〈 fθn − f, zn − z〉〉 − 〈〈Lzn − Lz, zn − z〉〉 − 〈〈Aαn z − A z, zn − z〉〉
− 〈〈(Aαn zn + wn) − (Aαn z + wn), zn − z〉〉 − 〈〈wn − w, zn − z〉〉
− 〈〈Bβn zn − Bβn z, zn − z〉〉 − 〈〈Bβn z − Bz, zn − z〉〉.

By the monotonicity of L , Aαn + Nγn and Bβn , from hypotheses H(4), we have

εn‖zn‖2
V ≤ εn‖zn‖V ‖z‖V + θn‖zn − z‖V + ‖Aαn z − A z‖V ∗‖zn − z‖V

+‖wn − w‖V ∗‖zn − z‖V + ‖Bβn z − Bz‖V ∗‖zn − z‖V .
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Since for any wn ∈ Nγn z, the above inequality holds, by Lemma 3.3, we can choose wn ∈
Nγn z such that

εn‖zn‖2
V ≤ εn‖zn‖V ‖z‖V + θn‖zn − z‖V + αnc1‖z‖V ‖zn − z‖V

+ (γnc3‖z‖V + T 1/2εn)‖zn − z‖V + βnc2T ‖z‖V ‖zn − z‖V ,

which implies that

‖zn‖2
V ≤ θn

εn
‖zn − z‖V + αn

εn
c1‖z‖V ‖zn − z‖V + γn

εn
c3‖z‖V ‖zn − z‖V

+ βn

εn
c2T ‖z‖V ‖zn − z‖V + ‖zn‖V ‖z‖V + T 1/2‖zn − z‖V .

In view of hypothesis H(5), the above inequality confirms a constant C independent of n
such that

‖zn‖V ≤ C. (3.28)

In order to show that {zn} is uniformly bounded in W , we still have to prove that there exists
a constant C ′ such that ‖Lzn‖V ∗ ≤ C ′. In terms of (3.26), there exists wn ∈ Nγn zn such that

fθn = Lzn + Aαn zn + Bβn zn + εnJ zn + wn,

which implies that

‖Lzn‖V ∗ ≤ ‖Aαn zn − A zn‖V ∗ + ‖A zn‖V ∗ + ‖Bβn zn − Bzn‖V ∗ + ‖Bzn‖V ∗

+ ‖ fθn − f ‖V ∗ + ‖ f ‖V ∗ + εn‖zn‖V + ‖wn − ŵn‖V ∗ + ‖ŵn‖V ∗

for any ŵn ∈ N zn . Since ŵn ∈ N zn is arbitrary, by (3.10) and (3.12) in Lemma 3.3, we
can choose ŵn ∈ N zn such that

‖Lzn‖V ∗ ≤ αnc1‖zn‖V + ‖A zn‖V ∗ + βnc2‖zn‖V + ‖Bzn‖V ∗

+ θn + ‖ f ‖V ∗ + εn‖zn‖V + γnc3‖zn‖V + T 1/2εn + ‖ŵn‖V ∗ . (3.29)

From (1–3) in Lemma 3.2 the operators A , B and N are bounded. So by means of hypotheses
H(5) and (3.28), the inequality (3.29) implies that there exists a constant C ′ also independent
of n such that

‖Lun‖V ∗ ≤ C ′.

This together with (3.28) completes the Proof of Theorem 3.2. ��
Theorem 3.3 Assume that all hypotheses of Theorem 3.2 hold. Then there exists a conver-
gent subsequence of {zn} such that every weak cluster of sequence {zn} in W is a solution of
evolution inclusion (3.2).

Proof By Theorem 3.2, {zn} is uniformly bounded in W and so it is weakly compact due to
the reflexivity of the space W . It follows that there exists a subsequence of {zn}, still denoted
by {zn}, such that zn ⇀ z in W , which implies that

zn ⇀ z and Lzn ⇀ Lz as n → ∞. (3.30)

Since zn is solution to the regularized inclusion (3.5), there exists a wn ∈ Nγn zn such that

fθn = Lzn + Aαn zn + Bβn zn + εnJ zn + wn . (3.31)
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Thus, for any ŵn ∈ N zn, w ∈ N z, we get

〈〈εnJ zn, zn − z〉〉 = 〈〈 fθn − f, zn − z〉〉 + 〈〈 f, zn − z〉〉 − 〈〈Lzn − Lz, zn − z〉〉
− 〈〈Lz, zn − z〉〉 − 〈〈Aαn zn − A zn, zn − z〉〉 − 〈〈wn − ŵn, zn − z〉〉
− 〈〈A zn + ŵn − (A z + w), zn − z〉〉 − 〈〈A z + w, zn − z〉〉
− 〈〈Bβn zn − Bzn, zn − z〉〉 − 〈〈Bzn − Bz, zn − z〉〉
− 〈〈Bz, zn − z〉〉. (3.32)

Due to ŵn ∈ N zn is arbitrary, we can choose ŵn ∈ N zn by (3.12) in Lemma 3.3 such that

‖ŵn − w‖V ∗ ≤ γnc3‖z‖V + T 1/2εn . (3.33)

By using the weak convergence of {zn}, the monotonicity of L , A +N and B, the hypotheses
H(4) and H(5), and Lemma 3.3, we deduce from (3.32) that

lim sup
n→∞

〈〈εnJ zn, zn − z〉〉 ≤ 0,

which by the (S+) property of J implies that

zn → z. (3.34)

Furthermore, for any weak cluster z of sequence {zn}, there exists a subsequence of {zn}, still
denoted by {zn}, such that zn ⇀ z in W . By the same arguments as above we can always
obtain zn → z. From Lemma 3.2, the operator A is demicontinuous, the operator B is linear
and bounded which implies that it is continuous, and the operator N is weakly closed. By
the convergence of {zn}, we obtain that there exists a w ∈ N z such that

A zn ⇀ A z, Bzn → Bz, ŵn ⇀ w as n → ∞. (3.35)

Under the hypotheses H(4) and H(5), it follows from Lemma 3.3 that

fθn → f, εnJ zn → �, Aαn zn − A zn → �, Bβn zn − Bzn → �,

wn − ŵn → � (n → ∞), (3.36)

where � is the zero element of V ∗. Therefore, from (3.35) and (3.36),

Aαn zn ⇀ A z, Bβn zn → Bz, wn ⇀ w ∈ N z as n → ∞. (3.37)

Letting n → ∞ in (3.31), by (3.30), (3.36) and (3.37), we conclude that

f = Lz + A z + Bz + w ∈ Lz + A z + Bz + N z,

which together with Lemma 3.4 implies that z is a solution of evolution inclusion (3.2). This
completes the Proof of Theorem 3.3. ��
Acknowledgements The authors are grateful to the referee for valuable comments and suggestions.

References

1. Berkovits, J., Mustonen, V.: Monotonicity methods for nonlinear evolution equations. Nonlinear Anal.
TMA 27, 1397–1405 (1996)

2. Carl, S., Heikkilä, S.: Nonlinear Differential Equations in Ordered Spaces. Chapman & Hall/CRC, Boca
Raton, FL (2000)

123



388 J Glob Optim (2009) 45:371–388

3. Carl, S., Motreanu, D.: Extremal solutions of quasilinear parabolic inclusions with generalized Clarke’s
gradient. J. Differ. Equ. 191, 206–233 (2003)

4. Carl, S., Naniewicz, Z.: Vector quasi-hemivariational inequalities and discontinuous elliptic systems.
J. Global Optim. 34, 609–634 (2006)

5. Carl, S., Le, V.K., Motreanu, D.: Existence and comparison results for quasilinear evolution hemivari-
ational inequalities. Electron. J. Differ. Equ. 57, 1–17 (2004)

6. Carl, S., Le, V.K., Motreanu, D.: The sub-supersolutio method and extremal solutions for quasilinear
hemivariational inequalities. Differ. Integral Equ. 17, 165–178 (2004)

7. Carl, S., Le, V.K., Motreanu, D.: Nonsmooth Variational Problems and their Inequalities, Comparison
Principles and Applications. Springer-Verlag, Berlin (2005)

8. Clarke, F.H.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)
9. Denkowski, Z., Migorski, S.: Existence of solutions to evolution second order hemivariational inequal-

ities with multivalued damping. Syst. Model. Optim. 166, 203–215 (2005)
10. Denkowski, Z., Migorski, S., Papageorgiou, N.S.: An Introduction to Nonlinear Analysis: Applica-

tions. Kluwer Academic Publishers, Boston, Dordrecht, London (2003)
11. Giannessi, F., Khan, A.A.: Regularization of non-coercive quasi variational inequalities. Control

Cybern. 29, 91–110 (2000)
12. Liu, Z.H.: Some convergence results for evolution hemivariational inequalities. J. Global Optim. 29,

85–95 (2004)
13. Liu, Z.H.: Browder-Tikhonov regularization on non-coercive evolution hemivariational inequalities.

Inverse Probl. 21, 13–20 (2005)
14. Migorski, S.: Boundary hemivariational inequalities of hyperbolic type and applications. J. Global

Optim. 31, 505–533 (2005)
15. Motreanu, D., Panagiotopoulos, P.D.: Minimax Theorems and Qualitative Properties of the Solu-

tions of Hemivariational Inequalities and Applications, Nonconvex Optimization and Its Applications,
vol. 29. Kluwer Academic, Dordrecht (1999)

16. Naniewicz, Z., Panagiotopoulos, P.D.: Mathematical Theory of Hemivariational Inequalities and Appli-
cations. Marcel Dekker, New York (1995)

17. Ochal, A.: Existence results for evolution hemivariational inequalities of second order. Nonlinear Anal.
TMA 60, 1369–1391 (2005)

18. Panagiotopoulos, P.D.: Coercive and semicoercive hemivariational inequalities. Nonlinear Anal.
TMA 16, 209–231 (1991)

19. Panagiotopoulos, P.D.: Hemivariational Inequalities, Applications in Mechanics and Engineer-
ing. Springer-Verlag, Berlin (1993)

20. Panagiotopoulos, P.D.: Hemivariational inequalitiy and fan-variational inequality. New applications and
results. Atti. Sem. Mat. Fis. Univ. Modena XLIII, 159–191 (1995)

21. Xiao, Y.B., Huang, N.J.: Sub-supersolution method and extremal solutions for higher order quasi-linear
elliptic hemi-variational inequalities. Nonlinear Anal. TMA 66, 1739–1752 (2007)

22. Xiao, Y.B., Huang, N.J.: Generalized quasi-variational-like hemivariational inequalities. Nonlinear Anal.
TMA 69, 637–646 (2008)

23. Zeidler, E.: Nonlinear Functional Analysis and its Applications, vol. II. Springer-verlag, Berlin (1990)

123


	Browder-Tikhonov regularization for a class of evolution second order hemivariational inequalities
	Abstract
	1 Introduction
	2 Preliminaries
	3 Main results
	Acknowledgements


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


